Inverse Matrices
Definition
Two nxn matrices A and B are said to be inverses of one another iff
AB=BA=1, (we write B=A")

Recall
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How to find inverses

Let A be an nxn matrix. Augment A with the nxn identity matrix and transform the
augmented matrix to its RREF. If the RREF of A is | , A™ exists (see diagram below).

Otherwise, the matrix A has no inverse (singular).

A = | AT



Problem 1:

1 2
Find the inverse of the matrix A = {3 } .
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Therefore, A" =|3 _1].
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Problem 2:
Find the inverse of the matrix
3 3
A= 4 3
3 4
and use it to solve the system
X+3y+3z=1
X+4y+3z=2
X+3y+4z=3
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—>010|—110 and |1
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Recall
If AX=Db and A exists, then X=A'D.

Therefore, if we write the system in the matrix equation form

1 3 3||«x 1 X 7 -3 3|1 -8
1 4 3||y|=1]2]|,then [y|=|-1 1 0||2|]=|1
1 3 4||z 3 z -1 0 1]|3 2
Problem 3
10 3 0
Find the inverse of B = 020 4.
10 1 1
00 21
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10 3 0 [1 0 0 0] 1030|1(1)°°
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103 0 |1 0 0 O]
0102|0100
! 21 — The matrix B has no inverse (singular).
001 =0 =00
2 2
_0000|0—101_




Theorem 2
¢ The inverse of a matrix is unique.
Proof

Assume an nxn matrix A has two different inverses, B and C.ThenAB=BA=1,

and AC =CA=1,.Then B=1, B =CAB=C(AB)=Cl_=C.

¢ (A=A
Proof

AAT =

n

¢ (AB) =B7A"
Proof

ABBA'=Al At=AAT =]

Theorem 3 (invertible matrices)

Let A be an nxn matrix. The following statements are equivalent.
1. A is invertible
2. The reduced row echelon form of A is I,

3. Thesystem AX =b has a unique solution for any nx1 vector b ( X = A‘lﬁ)

4. Thesystem AX =0 has only the trivial solution ()? = 6)
5. The columns of A span R"

6.  The columns of A are independent

7.  The columns of A form a basis for R"

8.  The dimension of the null space of A is zero
9. detA=0

10. The matrix A does not have a zero eigenvalue



Homework

1. Find the inverse of

1 0 -2
1 1

a. A= b. B=| -3 1 4
15 20

2 -3 4

2. Suppose P is invertible and A=PBP ™. Solve for B in terms of A.

3. Show that (CA)_l = %Al (C: constant).
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4. Show that a b = ! d b
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